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ABSTRACT

An efficient formal synthesis of SCH 351448 was accomplished through the tandem cross-metathesis (CM)/oxa-Michael, the 1,4-syn aldol, the
tandem oxidation/oxa-Michael, and the Suzuki coupling reaction.

Low-density lipoprotein receptor (LDL-R) is a mem-
brane-anchored, transmembrane receptor that plays an
important role in regulating plasma cholesterol levels.1

Increased levels of LDL-R leads to reduced cholesterol
levels and, therefore, is a promising strategy to treat
hypercholesterolemia. Hedge and co-workers screened
microbial fermentation broths and reported the isolation
and structure elucidation of SCH 351448 (1, Scheme 1), an
activator of the LDL-R obtained from a microorganism
belonging toMicromonospora sp.2 Due to its potential for
treating hypercholesterolemia, the synthesis of 1 has

attracted considerable interest froma number of groups,3,4

culminating in the first total synthesis by Lee and co-
workers.3a Herein, we report an efficient formal synthesis
of 1 using a combination of the tandem cross-metathesis
(CM)/oxa-Michael reaction and the tandem oxidation/
oxa-Michael reaction.
Our retrosynthetic plan for 1 relies on the tandem CM/

oxa-Michael reaction and the tandem oxidation/oxa-Mi-
chael reaction for the synthesis of the 2,6-cis-tetrahydro-
pyrans embedded in 1 (Scheme 1). We envisioned that the
Suzuki coupling reaction of 3 and 4 would complete the
monomeric unit 2, which would constitute a formal synth-
esis of 1. The tandem oxidation/oxa-Michael reaction in
conjuction with the dithiane coupling reaction was ex-
pected to afford 2,6-cis-tetrahydropyran 4 with excellent
stereoselectivity. The requisite epoxide 6 could be prepared
by the 1,4-syn aldol reaction of tetrahydropyran aldehyde
8 and ketone 9. We envisioned that the tandem CM/oxa-
Michael reaction of hydroxy alkene 10 and (E)-crotonal-
dehyde would smoothly proceed to provide 2,6-cis-tetra-
hydropyran aldehyde 8 under mild thermal conditions.
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The formal synthesis of SCH 351448 (1) started with the
preparation of 2,6-cis-tetrahydropyran aldehyde 8 and
ketone 9 (Scheme 2). Opening of the chiral epoxide 115

with 3-butenylmagnesium bromide provided hydroxy al-
kene 10. The CM reaction of 10 and (E)-crotonaldehyde in
the presence of Hoveyda�Grubbs II catalyst6 and the
subsequent oxa-Michael reaction smoothly proceeded to
provide the desired 2,6-cis-tetrahydropyran aldehyde 8

(60�77%, dr = 4�5:1).7�11 The conjugate addition step
required no activation by base or microwave7 and pro-
ceeded under mild thermal conditions. To the best of our
knowledge, this is the first successful example of the
tandem CM/Michael reaction with aldehyde substrates.
The Myers’ asymmetric alkylation reaction12 of 1212 and
13

13 afforded the desired alkylation product 14 as a single
disastereomer in 97% yield. Treatment of 14 with CH3Li
afforded the corresponding methyl ketone 9 in 89% yield.

Scheme 1. Retrosynthetic Plan for SCH 351448 (1) Scheme 2. Synthesis of 2,6-cis-Tetrahydropyran Aldehyde 8
through the Tandem CM/Oxa-Michael Reaction

Table 1. 1,4-syn-Aldol Reaction of 8 and 9

entry reagents

enolization

conditions

reaction

conditions

yield

(%)a drb

1 c-Hex2BCl,

Et3N, Et2O

0 �C, 1 h �78 �C, 1 h;

�20 �C, 14 h

55 1.5:1

2 (�)-Ipc2BCl,

Et3N, Et2O

0 �C, 2 h �78 �C, 5 h 70 3:1

3 (�)-Ipc2BCl,

Et3N, Et2O

0 �C, 1 h �78 �C, 1 h;

�20 �C, 3 h

62 4:1

4 (�)-Ipc2BCl,

Et3N, Et2O

0 �C, 1 h �78 �C, 2 h;

�20 �C, 16 h

72 9:1

aCombined yield of the isolated 15 and 150. bThe diastereomeric
ratio (15:150) was determined by integration of the 1H NMR of the
mixture.
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With efficient routes to 8 and 9 in hand, we next
examined the coupling of 8 and 9 through the 1,4-syn aldol
reaction (Table 1). The aldol addition of 9 to 8 (c-Hex2BCl,
Et3N, Et2O)14 provided the desired β-hydroxy ketone 15

(55%), butwithpoor stereoselectivity (dr=1.5:1, entry 1).
The 1,4-syn aldol reaction of 8 and 9 at �78 �C in the
presence of (�)-Ipc2BCl

14 improved the stereoselectivity of
the reaction (dr = 3:1, entry 2). Surprisingly, a higher
reaction temperature and prolonged reaction time further
improved the stereoselectivity of the 1,4-syn aldol reaction
(dr = 9:1, entry 4).15 Despite the broad utility, the 1,4-syn
aldol reaction has rarely been applied in the stereoselective
synthesis of natural products.15,16

1,3-anti Reduction,17 PMB-acetal protection, and DI-
BAL-reduction provided a mixture of 18 and 180 (3:1,
Scheme 3).11,18 MOM-protection, acetonide deprotection,
and epoxide formation19 set the stage for the installation of
the second 2,6-cis-tetrahydropyran moiety.

The coupling reaction of epoxide 6 and dithiane 720

proceeded smoothly to provide allyl alcohol 5 for the key

tandem oxidation/oxa-Michael reaction (Scheme 4). The
tandem oxidation/oxa-Michael reaction20,21 of 5 (MnO2,
CH2Cl2, 25 �C, 8 h) stereoselectively provided the desired
2,6-cis-tetrahydropyran aldehyde 20 with excellent yield
and stereoselectivity (90%, dr >20:1).11 One-carbon
homologation of aldehyde 20 was achieved by the Best-
mann reagent.22

Having successfully assembled both the 2,6-cis-tetrahy-
dropyran moieties in 1, we embarked on the final stage of
the synthesis of 1 (Scheme 5). The Suzuki coupling
reaction23 of alkyne 4 with triflate 324 provided the

Scheme 3. Synthesis of Epoxide 6

Scheme 4. Synthesis of 2,6-cis-Tetrahydropyran Aldehyde 20
through the Tandem Oxidation/Oxa-Michael Reaction
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corresponding coupling product 21.25 Simultaneous
Bn-deprotection, desulfurization, and reduction of al-
kyne 21were accomplished by treatment withRaney-Ni.

Oxidation to carboxylic acid, formation of Bn ester, and
PMB-deprotection completed the synthesis of 2, which
proved identical in all respects with the known synthetic 2
reported by De Brabander and co-workers (see the Sup-
porting Information for details).3b

In summary, the utility of the tandem CM/oxa-Mi-
chael reaction and the tandem oxidation/oxa-Michael

reaction was demonstrated for the efficient formal

synthesis of SCH 351448 (1). The tandem reactions

proceeded under mild reaction conditions and required

no activation of oxygen nucleophiles and/or aldehydes.

It was also shown that the 1,4-syn aldol reaction and the

Suzuki coupling reaction were effective for the efficient

construction of the monomeric unit of 1. It is note-

worthy that all seven of the stereogenic centers in 2

was derived from three simple fragments 11�13 and

substrate-controlled reactions. The convergent route

should be broadly applicable to the synthesis of a diverse set

of analogues of 1 for further biological studies.
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Scheme 5. Completion of a Formal Synthesis of SCH 351448 (1)


